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Abstract 

Background:  Clinical data repositories (CDR) including electronic health record (EHR) data have great potential for 
outcome prediction and risk modeling. We built a prediction tool integrated with CDR based on pattern discovery 
and demonstrated a case study on contrast related acute kidney injury (AKI).

Methods:  Patients undergoing cardiac catheterization from January 2015 to April 2017 were included. AKI was iden‑
tified based on Acute Kidney Injury Network definition. Predictive model including 16 variables covered in existing AKI 
models was built. A visual analytics tool based on pattern discovery was trained on 70% data up to August 2016 with 
three interactive knowledge incorporation modes to develop 3 models: (1) pure data-driven, (2) domain knowledge, 
and (3) clinician-interactive, which were tested and compared on 30% consecutive cases dated afterwards.

Results:  Among 2560 patients in the final dataset, 189 (7.3%) had AKI. We measured 4 existing models, whose areas 
under curves (AUCs) of receiver operating characteristics curve for the test dataset were 0.70 (Mehran’s), 0.72 (Chen’s), 
0.67 (Gao’s) and 0.62 (AGEF), respectively. A pure data-driven machine learning method achieves AUC of 0.72 (Easy 
Ensemble). The AUCs of our 3 models are 0.77, 0.80, 0.82, respectively, with the last being top where physician knowl‑
edge is incorporated.

Conclusions:  We developed a novel pattern-discovery-based outcome prediction tool integrated with CDR and 
purely using EHR data. On the case of predicting contrast related AKI, the tool showed user-friendliness by physicians, 
and demonstrated a competitive performance in comparison with the state-of-the-art models.
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Background
Clinical data repositories (CDRs) covering Cardiovas-
cular Information Systems (CVIS) [1] and electronic 
health records (EHR) have great potential for outcome 
prediction and risk modeling. However, most CDRs 

were only used for data displaying, and using data from 
CDR for outcome prediction often requires careful study 
design and sophisticated modeling techniques before a 
hypothesis can be tested. Without requiring careful and 
sophisticated study design, predictive models of machine 
learning fitted from population-specific historical CDR 
records (training data) show great value in healthcare 
applications [2]. However, they are often not easy to fol-
low by doctors, and challenge exists in predicting real-
world unseen cases (testing data), which often show 
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changed distributions of the outcome target in a way not 
foreseen by training data. This challenge, called concept 
drift [3], could not be easily addressed in machine learn-
ing with training–testing split settings. We argue that 
incorporating clinical domain knowledge in an intuitive 
way could improve predictive models against concept 
drift.

Contrast related acute kidney injury (AKI) is among 
the most common complications induced by use of con-
trast [4, 5]. It is strongly associated with late renal and 
cardiovascular adverse events. While established AKI 
risk models exist [5–7], they were found to be less predic-
tive compared to models fitted from a different popula-
tion [8–10]. The prevalence of AKI varies and might be 
changed with associated change of contrast dosage in 
procedures, introducing concept drift challenge for pre-
dictive models fitted from training data. To bridge the 
above gap, a prediction tool integrated with CDR based 
on pattern discovery was built and in this case study, we 
focus on AKI after cardiac catheterization.

Methods
As previous described [11], patient records undergoing 
cardiac catheterization and percutaneous coronary inter-
vention (PCI) from January 13, 2015 to April 27, 2017 in 
Peking University First Hospital were included, a cardio-
vascular CDR integrated with multiple hospital informat-
ics systems was established to provide the foundation 
with retrospective structured data registries. The follow-
ing exclusion criteria was used: dialysis, end-stage renal 
disease, renal transplant, or missing pre- or post-proce-
dural creatinine data. To prevent the potential missing 
data, structured prior medical history and vital signs was 
entered by residents through a composer tool integrated 
with the EHR admission note system. Crucial data such 
as left ventricular ejective fraction (LVEF) was extracted 
from structured echocardiogram reports. A total of 16 
pre-operative and in-operative variables covered in rep-
resentative existing AKI models including Mehran’s 
score [5], Chen’s score [8], Gao’s score [9], and Age, Glo-
merular filtration rate and Ejection Fraction (AGEF) 
score [6] were used for predictive models. We refrained 
from introducing extra variables here to stay focused 
on how intuitive domain knowledge incorporation, 
instead of mixing contribution from extra information, 
could improve predictive modeling for AKI. The Institu-
tional Review Board at Peking University First Hospital 
approved this study, and all data was de-identified and 
informed consent was waived for the retrospective data.

AKI was identified based on Acute Kidney Injury Net-
work (AKIN) definition, which was increase of serum 
creatinine (≥ 0.3  mg/dL increase, or 1.5-fold or more 
increase) from most recent baseline before the procedure 

to the post-procedure 7-day peak [4], and the urine out-
put criterion for AKI diagnosis was not considered in this 
study. Based on previous studies, AKI is a typical imbal-
anced target in predictive modeling like many outcomes 
in clinical practice. Furthermore, recent patients tend 
to have a lower rate of AKI in the whole cohort which is 
potentially a concept drift.

Pattern discovery was recently developed to work on 
incomplete noisy data for imbalanced target predic-
tion, which was validated by our previous study [12]. 
The interpretable representation of pattern serves as a 
good basis to incorporate domain knowledge intuitively. 
We developed a pattern discovery based visual analytics 
tool and applied it on this AKI case study. We trained it 
on 70% consecutive patient records with three knowl-
edge incorporation modes: (1) pre-: data-driven, (2) in-: 
clinician-interactive, and (3) post-: clinician-refined [11]. 
The first mode is purely data-driven without incorporat-
ing any knowledge (pre-mode), equivalent to the previ-
ous work [12]. In the other two modes, a physician using 
the visual analytics could change the variables and val-
ues on-the-fly (in-mode), and further modify the model 
afterwards (post-mode), respectively. To evaluate the 
performance of predictive modeling with knowledge 
incorporation, we tested and compared it with other 
models on the 30% consecutive patient records dated 
afterwards. Three modes of knowledge incorporation are 
enabled and elaborated below, which was integrated with 
the CDR (Fig. 1).

(1)	 Pre-mode: We extended pattern discovery to han-
dle numeric variables without requiring setting 
prior categorization rules, so that it can be used 
for mixed categorical and numeric data in a pure 
data-driven way without knowledge incorporation, 
serving as the baseline of knowledge incorporation. 
To categorize a numeric variable automatically, we 
employed the branching strategy in decision trees 
[14]. All unique values of the variable are sorted 
in ascending order, among which a numeric cutoff 
x is determined so that maximal information gain 
for the target variable is achieved by categoriz-
ing (training) data of the variable as “≤ x” or “ > x” 
accordingly.

(2)	 In-mode: We developed the visual analytics tool, 
where clinician users can view and edit an existing 
pattern (e.g., from pre-mode) interactively through 
adding, removing variables, and choosing variable 
values according to their domain knowledge. The 
tool rediscovers the pattern on-the-fly and shows 
the updated training predictive metrics.

(3)	 Post-mode: After the discovered pattern is 
exported, clinician users can further refine the pat-
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tern solely from their knowledge without referring 
to the training data, such as manually changing 
the numeric values in the pattern or the optimized 
matching ratio.

Continuous variables were reported as mean ± SD 
and categorical variables as percentages (%) for all par-
ticipants. Normally distributed continuous variables 
were compared using one-way ANOVA. Four common 
machine learning predictive algorithms including logistic 
regression [15], decision trees [14], random forest [16], 
and Easy Ensemble [17], which were state-of-arts method 
handling imbalanced prediction targets, were also used 
for comparing the performance. In all models, the cli-
nician user did not have access to the testing data. All 
three resultant models were tested on the 30% consecu-
tive patients and compared with existing risk scores and 
other trained machine learning models. We evaluated 
the areas-under-curve (AUCs) of the receiver operating 
characteristics (ROC) curve, which measures the model 
trade-off between sensitivity and specificity. To meas-
ure the performance for imbalanced target prediction, 

F-score [20] considering both precision and sensitivity 
was reported, so was G-mean [21], the geometric mean 
of specificity and sensitivity.

Except AUC, all other point-specific performance met-
rics correspond to a certain cutoff for each model. In pat-
tern discovery, this was auto determined by the matching 
threshold during training. For Mehran’s, Chen’s, Gao’s, 
and AGEF risk scores, we found their published thresh-
olds yielded poor point-specific performance. Therefore, 
we reported their results associated with the optimal 
ROC points, in order not to understate their perfor-
mance in case proper thresholds could be somehow 
obtained. For other machine learning methods except 
pattern discovery and Easy Ensemble, we found that 
imbalance showed great challenge as reported previously 
[12], generating trivially bad testing performance. In 
order not to understate their top potential performance 
and to stay focused on knowledge incorporation, we 
did random up-sampling (positive samples) and down-
sampling (negative samples) to 1:1 in training for these 
methods and reported whichever better testing results. 
Other advanced techniques handling imbalance [18, 19] 

Fig. 1  Pattern discovery based visual analytics tool using the in-mode of knowledge incorporation: age in pattern changed by clinician on-the-fly. 
Note all the prediction metrics are for the training data. The left panel displays the pattern where the modified variable Age [AKI] highlighted in 
blue illustrates the clinician’s domain knowledge incorporation (in-mode). In the pattern, the prediction target (AKI-Yes) is shown at the top. Pattern 
variables were connected via arcs indicating statistical significances of Chi-square test of independence [13]. A click on a variable removes an 
attribute (dimming the blue vertical bar). A click on “Add attribute” shows a pop-up list of variables that could be added by users. The top right panel 
shows the training predictive metrics of the pattern once “Update pattern” is clicked. The bottom right pattern shows the pattern history summary, 
where the last pattern is generated in the pre-mode. A click on “Export results” exports the current pattern for post-mode refinement
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are beyond our scope. All analyses were performed using 
R (http://​www.R-​proje​ct.​org) and Python (https://​www.​
python.​org). A p value of < 0.05 (two-sided) was consid-
ered statistically significant for all tests.

Results
Among a total of 2560 patients who met the inclusion 
and exclusion criteria, 7.4% (N = 189) had AKI, includ-
ing 4.9% (N = 126) of stage 1, 1.2% (N = 31) of stage 2 and 
1.2% (N = 31) of stage 3, respectively, which is a typical 
imbalanced target in predictive modeling. The first 70% 
(N = 1791) consecutive records were used for training. 
The remaining 30% (N = 769) recent consecutive records 
were used for testing and comparisons.

The general statistics of the 16 input variables and AKI 
training and testing patient records are shown in Table 1 
and the risk factors’ importance from Random Forest 
for AKI was shown in Fig. 2. We show example catego-
rized versions of age and left ventricular ejection frac-
tion (LVEF) where there is no significant training–testing 
difference. Potential concept drift stems from the sig-
nificant training–testing difference for AKI (p = 0.007). 
Reduced AKI (5.2%) in testing data may be attributed to 
improved procedure handling with reduced contrast vol-
ume (p < 0.001), increased urgent PCI (p = 0.019) among 
other factors besides fewer anemia (p = 0.016) patients. 

Table 1  Training and testing statistics of the AKI case study

SD, standard deviation; MI, myocardial infarction; PCI, percutaneous coronary intervention; IABP, intra-aortic balloon pump; GFR, glomerular filtration rate; HDL-C, high 
density lipoprotein cholesterol; LVEF, left ventricular ejection fraction; AKI, acute kidney injury

*Categorized versions to illustrate training–testing consistency of the variables even after categorization

Training (N = 1791) Testing (N = 769) P value

Age, mean (SD), years 64.37 (11.07) 64.21 (11.00) 0.742

Age (> 60)*, n(%) 1104 (61.6%) 488 (63.5%) 0.413

Male, n (%) 1189 (66.4%) 516 (67.1%) 0.769

Anemia, n (%) 33 (1.8%) 27 (3.5%) 0.016

Diabetes, n (%) 783 (43.7%) 345 (44.8%) 0.623

Heart Failure, n (%) 127 (7.1%) 63 (8.2%) 0.372

Hypotension, n (%) 20 (1.1%) 8 (1.0%) 0.970

MI history, n (%) 127 (7.1%) 49 (6.4%) 0.566

Hypercholesterolemia, n (%) 1542 (86.1%) 683 (88.8%) 0.071

Urgent PCI, n (%) 204 (11.4%) 114 (14.8%) 0.019

Hypertension, n (%) 1251 (69.8%) 553 (71.9%) 0.612

IABP, n (%) 4 (0.5%) 12 (0.7%) 0.867

Contrast volume, mean (SD), mL 135.23 (71.17) 124.46 (63.90)  < 0.001

GFR, mean (SD), ml/min 77.76 (26.44) 82.56 (26.86) 0.248

HDL-C, mean (SD), mmol/L 1.02 (0.26) 1.02 (0.25) 0.784

Pre peak creatinine, mean (SD), μmol/L 109.78 (18.80) 106.76 (19.58) 0.558

LVEF, mean (SD), % 66.27 (11.37) 66.36 (10.96) 0.841

LVEF (≤ 45%)*, n (%) 103 (5.7%) 44 (5.7%) 0.949

AKI, n (%) 149 (8.3%) 40 (5.2%) 0.007

Fig. 2  The risk factors importance from Random Forest for AKI. PCI, 
percutaneous coronary intervention; HDL, high density lipoprotein 
cholesterol; IABP, intra-aortic balloon pump; AKI, acute kidney injury

http://www.R-project.org
https://www.python.org
https://www.python.org
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This consecutive testing with concept drift is more chal-
lenging than conventional cross-validation where target 
distribution is maintained in testing [20].

Using pattern discovery visual analytics, three models 
were generated according to the knowledge incorpora-
tion modes.

(1)	 Pre-mode: the 11-variable pattern was discovered 
on the training data purely according to the cur-
rent algorithm [11]. It reads: LVEF ≤ 56.6%, pre 
peak creatinine > 160  μmol/L, glomerular filtra-
tion rate (GFR) ≤  31.5  ml/min, urgent PCI = Yes, 
intra-aortic balloon pump (IBAP) = Yes, contrast 
volume > 79.5 ml, age ≤ 58.5 years old, high density 
lipoprotein cholesterol (HDL-C) ≤ 0.695  mmol/L, 
hypertension = Yes, anaemia = Yes, with the match-
ing ratio 18%, which means a patient record has to 
match at least 2 out of the 11 variables to be a posi-
tive pattern match.

(2)	 In-mode: based on the pre-mode pattern, the cli-
nician user (Dr. YX Li in our author list) was free 
to modify pattern variables through the interface. 
The user changed Age from ≤ 58.5 to > 58.5 accord-
ing to clinical knowledge on age as a risk factor, and 
did not modify other variables, because they were 
consistent with the clinical knowledge of the risk 
factors. As illustrated in Fig.  1, the re-discovered 
pattern maintained the same set of variable-value 
pairs, while the matching ratio was automatically 
updated to 27% (i.e., at least 3 to match).

(3)	 Post-mode: Upon the in-mode pattern, the clini-
cian user further refined Age to > 70, and contrast 
volume to > 100 according to experience without 
referring to training data. No change was made to 
the matching ratio.

The performance comparison results are shown in 
Table 2, with models of best performance highlighted in 
bold. Both in-mode and post-mode models with knowl-
edge incorporation demonstrate improved AUC (0.80 
and 0.82) on top of the pre-mode performance (0.77). 
Knowledge incorporation models demonstrated better 
balanced specificity and sensitivity compared to the risk 
scores developed from elsewhere. All four risk scores 
sacrificed sensitivity remarkably for specificity, result-
ing in compromised AUCs (0.62–0.72). Machine learn-
ing methods without proper imbalance handling were 
no better than existing risk models on AUCs (0.58–0.64), 
even though resampling was applied. The top data-driven 
method Easy Ensemble produced a closer AUC (0.70). 
Similar conclusions on F-scores and G-means demon-
strate the advantage of domain knowledge incorporation 

with data-driven machine learning to overcome concept 
drift in this real AKI use case.

Discussion
We have reported our initial results of knowledge incor-
poration utilizing pattern discovery for AKI predictive 
modeling with data of cardiac catheterization patients in 
Peking University First Hospital. Our models with knowl-
edge incorporation generated from training data have 
demonstrated promising predictive performance in con-
secutive testing data compared to existing risk models 
and other data-driven machine learning methods.

Similar with previous studies, existing AKI predictive 
models were found to have poor predictive performance 
when generalized into different population [8–10]. With 
the development of CDRs and EHR in China, more and 
more data generated with informatics system are avail-
able, however, challenges such as missing data or concept 
drift [3], increased the difficulties for using these data in 
real world practice. Proposed in recent work [12], a pat-
tern was represented as a set of variable-value pairs with 
an optimized matching threshold, and a heuristic pattern 
discovery algorithm was developed. Pattern discovery 
has demonstrated competitive cross-validation perfor-
mance on two retrospective real datasets for imbalanced 
target prediction. Interpretable patterns can provide 
insights in an intuitive way. Therefore, we developed a 
pattern discovery based visual analytics tool and applied 
it in this case study. Furthermore, our current model uses 

Table 2  Testing results of the three knowledge incorporation 
models in comparison with other risk scores and machine 
learning methods

The evaluation metrics are defined as follows:

Specificity = TN/(TN + FP); Sensitivity = TP/(TP + FN); Precision = TP/(TP + FP); 
F-score = 2*Precision*Recall/(Precision + Recall) if TP > 0 and 0 if TP = 0; TP is the 
count of true positives, FP of false positive, TN of true negatives and FN of false 
negatives

AUC, areas-under-curve; AGEF, Age, Glomerular filtration rate and Ejection 
Fraction

Model AUC​ Sensitivity Specificity F-score G-mean

(1) Pre-mode 0.77 0.83 0.57 0.17 0.69

(2) In-mode 0.80 0.70 0.80 0.26 0.75
(3) Post-mode 0.82 0.60 0.88 0.32 0.73

Mehran’s (> 7.8) 0.70 0.24 0.94 0.20 0.47

Chen’s (≥ 13) 0.72 0.42 0.88 0.24 0.61

Gao’s (> 5) 0.67 0.34 0.94 0.29 0.57

AGEF (≥ 0.66) 0.62 0.37 0.88 0.21 0.57

Logistic regression 0.59 0.84 0.33 0.12 0.53

Decision tree 0.58 0.61 0.55 0.12 0.58

Random forest 0.64 0.58 0.72 0.17 0.64

Easy ensemble 0.70 0.61 0.79 0.23 0.69
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data from CDR and EHR system, which makes the model 
could be calculated in real time to identify high-risk 
patients in the future.

There are also many challenges for implanting machine 
learning and deep learning algorithm into clinical predic-
tion. As described by Vapnik and Vashist [21] as ‘learning 
using privileged information’ paradigm, external infor-
mation is actually used at the time of training to improve 
the incurring decision rule. So that we argue that incor-
porating clinical domain knowledge in an intuitive way 
could improve predictive models using an integrated tool 
with CDR, which is friendly using for physicians to col-
laborate with data scientists. And the results of this case 
study demonstrate the advantage of incorporated domain 
knowledge which could alleviate the challenge of concept 
drift compared to pure data-driven models.

This study has several limitations. First, the dataset was 
limited as single center, which could introduce bias and 
lack of generalization. A consecutively enrollment of all 
cases could minimize related bias, and pre-structured 
data input was used to deal with data missing issue. Sec-
ondly, the definition of AKI was only based on change of 
creatinine based on AKIN, which could underestimate 
the incidence of real clinical AKI, however, this defini-
tion and methods of AKI identification was used in many 
previous studies, which were validated and with good 
feasibility based on CDRs and EHR data. In future work, 
we will further evaluate and enhance the tool with more 
case studies, as well as investigate into extra variables to 
improve AKI prediction.

In conclusion, we developed a novel pattern-discovery-
based outcome prediction tool integrated with CDR and 
purely using EHR data. On the case of predicting contrast 
related AKI, the tool showed user-friendliness by physi-
cians, and demonstrated a competitive performance in 
comparison with the state-of-the-art models.
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